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Martin J. Osborne in his preface to An introduction to Game Theory (Oxford

University Press, 2004) writes:

The English language lacks a third person singular pronoun widely inter-
preted to be sex neutral. In particular, many experiments have shown that
“he” is not neutral, a finding consistent with the observation that whereas
people may say “when an airplane pilot is working, he needs to concen-
trate”, they do not usually say “when a flight attendant is working, he
needs to concentrate” or “when a secretary is working, he needs to concen-
trate”. To quote the American Heritage Dictionary, “Thus he is not really
a gender-neutral prounoun; rather it refers to a male who is to be taken as
the representative member of the group referred to by its antecedent. The
traditional usage, then, is not simply a grammatical convention; it also
suggests a particular pattern of thought”. Like many writers, I regard as
unaccettable the bias implicit in the use “he” for individuals of unspecified
sex. [...] A common solution has been to use “they”. In some contexts
this usage sounds natural, but in others it does not; it can also create am-
biguity when the pronoun follows references to more than one person. I
choose a different solution: I use “she” exclusively. Obviously this usage,
like that of “he” is not sex neutral, but it may help to counterbalance the

widespred use of “he”, and seems unlikely to do any harm.

As I absolutely agree with Osborne, I follow his choice and use also “she” exclusively

in this work.
It pays also a humble tribute to women, as too many times their role is forgotten

and their importance underestimated.
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Introduction

Let us try to teach generosity and altruism,

because we are born selfish.

RICHARD DAWKINS

Since long time ago, great minds - Aristotle, Hobbes, Kant, Darwin, to cite
some names - have been contemplating and speculating about a fundamental
subject for life: the cooperative behaviour. The question initially was addressed
mainly from a philosophical view point, but then interessed diverse disciplines
like political science, economics, sociology, anthropology, psychology and evolu-
tionary biology. Nowadays also physics and mathematics deal with theories and
models concerning cooperation. Definitely cooperation is something that can be
encountered in many different environments: animal reign, gene-gene competi-
tion, economic equilibria, sociological systems are just some examples.

Nevertheless, cooperative behaviour can exist only as the counter-party to
selfishness. We report the words of Richard Dawkins, in his discussion related
to genes evolution but easily extendible also to other contexts, in order to better

understand the role of this dichotomy [1]:

...A predominant quality to be expected in a successful gene is ruthless
selfishness. This gene selfishness will usually give rise to selfishness

i individual behaviour. However there are special circumstances in



Introduction 2

which a gene can achieve its own selfish goals best by fostering a lim-
ited form of altruism at the level of individual animals. ‘Special’ and
‘limited’ are important words in the last sentence. Much as we might
wish to believe otherwise, universal love and the welfare of the species

as a whole are concepts that simply do not make evolutionary sense.

This is a key concept in the framework we will use to address the problem
of the dualism cooperation-altruism. The theory we will deal with is the “evolu-
tionary game theory” and we’ll study some particular application in the context
of complex networks.

This works is structured as follows: the first chapter constitutes a brief in-
troduction to the world of complex networks; the second chapter aims to give
some key concepts of classical game theory and evolutionary game theory; the
third and last chapter contains some original results we have found by implement-
ing a particular evolutionary game, the Ultimatum Game, on different kinds of

networks [2].



Chapter 1

Complex networks in pills

1.1 Complex networks are all around us

The last decade has witnessed the birth of a new movement of interest and re-
search in the study of complex networks, i.e. networks whose structure is irregular,
complex and dynamically evolving in time, with the main focus moving from the
analysis of small networks to that of systems with thousands or millions of nodes,
and with a renewed attention to the properties of networks of dynamical units.
This flurry of activity, triggered by two seminal papers, that by Watts and Stro-
gatz on small-world networks, appeared in Nature in 1998, and that by Barabasi
and Albert on scale-free networks appeared one year later in Science, has seen the
physics’ community among the principal actors, and has been certainly induced
by the increased computing powers and by the possibility to study the properties
of a plenty of large databases of real networks. These include transportation net-
works, phone call networks, the Internet and the World Wide Web, the actors’
collaboration network in movie databases, scientific coauthorship and citation
networks from the Science Citation Index, but also systems of interest in biology

and medicine, as neural networks or genetic, metabolic and protein networks.
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The massive and comparative analysis of networks from different fields has
produced a series of unexpected and dramatic results. The first issue that has
been faced is certainly structural. The research on complex networks begun with
the effort of defining new concepts and measures to characterize the topology
of real networks. The main result has been the identification of a series of uni-
fying principles and statistical properties common to most of the real networks
considered.

These empirical findings have initiated a revival of network modelling, since
the models proposed in mathematical graph theory turned out to be very far from
the real needs. Scientists had to do with the development of new models to mimic
the growth of a network and to reproduce the structural properties observed in
real topologies. The structure of a real network is the result of the continuous
evolution of the forces that formed it, and certainly affects the function of the
system. So that this stage of the research was motivated by the expectancy that
understanding and modelling the structure of a complex network would lead to
a better knowledge of its evolutionary mechanisms, and to a better cottoning on
its dynamical and functional behavior.

At the same time, it outcropped for the first time the possibility of study-
ing the dynamical behavior of large assemblies of dynamical systems interacting
via complex topologies, as the ones observed empirically. This led to a series of
evidences pointing to the crucial role played by the network topology in deter-
mining the emergence of collective dynamical behavior, such as synchronization,
or in governing the main features of relevant processes that take place in complex

networks, such as the spreading of epidemics, information and rumors.
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1.2 The structure of complex networks

In this section we will introduce definitions and notations, and discuss the basic
quantities used to describe the topology of a network. Then, we shall move to
the analysis of the properties observed in real networks, and provide the reader

with a brief review of the models motivated by the empirical observations.

1.2.1 Definitions and notations

Graph theory [4] is the natural framework for the exact mathematical treatment
of complex networks and, formally, a complex network can be represented as a
graph. A undirected (directed) graph G = (N, L) consists of two sets N and L,
such that N # () and £ is a set of unordered (ordered) pairs of elements of N.
The elements of N = {nq,ns,...,ny} are the nodes (or vertices, or points) of the
graph G, while the elements of £ = {l,ls, ..., [} are its links (or edges, or lines).
The number of elements in A and £ are denoted by N and K, respectively. In
the following parts, we will indicate a graph as G(N,K) = (N, L), or simply
G(N, K) or Gy g, whenever it is necessary to emphasize the number of nodes
and links in the graph.

A node is usually referred to by its order ¢ in the set A. In a undirected
graph, each of the links is defined by a couple of nodes ¢ and j, and is denoted
as (4, j) or l;;. The link is said to be incident in nodes i and j, or to join the two
nodes; the two nodes ¢ and j are referred to as the end-nodes of link (i, 7). Two
nodes joined by a link are referred to as adjacent or neighboring. In a directed
graph, the order of the two nodes is important: [;; stands for a link from ¢ to j,
and [;; # l;;. The usual way to picture a graph is by drawing a dot for each node
and joining two dots by a line if the two corresponding nodes are connected by

a link. How these dots and lines are drawn is irrelevant, and the only thing that
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(a) (b)

Figure 1.1: Graphical representation of an undirected (a), a directed (b), and
a weighted undirected (c) graph with N = 7 nodes and K = 14 links. In the
directed graph, adjacent nodes are connected by arrows, indicating the direction
of each link. In the weighted graph, the values w; ; reported on each link indicate
the weights of the links, and are graphically represented by the link thicknesses.

matters is which pairs of nodes form a link and which ones do not. Examples
of a undirected graph and of a directed graph, both with N = 7 and K = 14,
are shown in Fig. 1.1 (a) and (b), respectively. Note that the picture does not
contain loops, i.e. links from a node to itself, nor multiple edges, i.e. couples
of nodes connected by more than one link, since these elements are not allowed
by the standard definition of graph given above. Graphs with either of these
elements are called multigraphs [4]. In this work we deal only with undirected
graphs, and not on multigraphs

For a graph G of size N, the number of edges K is at least 0 and at most
N(N —1)/2 (when all the nodes are pairwise adjacent). G is said to be sparse if
K <« N? and dense if K = O(N?). A graph Gy g is said a complete N-graph if

N
K = = N(N —1)/2, and is denoted by Ky.
2

A subgraph G' = (N',L') of G = (N, L) is a graph such that NV C N and
L' C L. If G’ contains all links of G that join two nodes in N/, then G’ is said to
be the subgraph induced by N and is denoted as G’ = G|N"]. A subgraph is said
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to be mazimal with respect to a given property if it cannot be extended without
loosing that property. Of particular relevance for some of the definitions given
in the following subsections is the subgraph of the neighbors of a given node 1,
denoted as G;. G; is defined as the subgraph induced by N, the set of nodes
adjacent to i, i.e. G; = G[N].

A central concept in graph theory is that of reachability of two different nodes
of a graph. In fact, two nodes that are not adjacent may nevertheless be reachable
from one to the other. A walk from node i to node j is an alternating sequence
of nodes and edges (a sequence of adjacent nodes) that begins with i and ends
with j. The length of the walk is defined as the number of edges in the sequence.
A trail is a walk in which no edge is repeated. A path is a walk in which no
node is visited more than once. The walk of minimal length between two nodes
is known as shortest path or geodesic. A cycle is a closed walk, of at least three
nodes, in which no edge is repeated. A cycle of length k is usually said a k-cycle
and denoted as Cy. Cj is a triangle (C3 = K3), Cy is called a quadrilater, Cj
a pentagon, and so on. A graph is said to be connected if, for every pair of
distinct nodes 7 and j, there is a path from 7 to j, otherwise it is said unconnected
or disconnected. A component of the graph is a maximally connected induced
subgraph. A giant component is a component whose size is of the same order as
N.

It is often useful to consider a matricial representation of a graph. A graph
G = (N, L) can be completely described by giving the adjacency (or connectivity)
matrix A, a N x N square matrix whose entry a;; (¢,7 =1,...,N) is equal to 1
when the link /;; exists, and zero otherwise. This is thus a symmetric matrix for
undirected graphs. An alternative possibility is to use the incidence matrix B, a
N x K matrix whose entry b;; is equal to 1 whenever the node ¢ is incident with

the link i, and zero otherwise.
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1.2.2 Node degree, degree distributions and correlations

The degree (or connectivity) k; of a node i is the number of edges incident with

the node, and is defined in terms of the adjacency matrix A as:

If the graph is directed, the degree of the node has two components: the number
of outgoing links k¢ = . a;; (referred to as the out-degree of the node), and the
number of ingoing links k" = 3~ a;; (referred to as the in-degree of the node).
The total degree is then defined as k; = k%“* + k™. A list of the node degrees of
a graph is called the degree sequence.

The most basic topological characterization of a graph G can be obtained
in terms of the degree distribution P(k), defined as the probability that a node
chosen uniformly at random has degree k or, equivalently, as the fraction of nodes
in the graph having degree k. Alternatively, the degree distribution is denoted
as Py, or pg, to indicate that the variable k£ assumes non negative integer values.

In the case of directed networks one needs to consider two distributions, P (k™)
and P(k°“). Information on how the degree is distributed among the nodes of
a undirected network can be obtained either by a a plot of P(k), or by the
calculation of the moments of the distribution. The n-moment of P(k) is defined

as:

(k") =Y " k"P(k). (1.2)

The first moment (k) is the mean degree of G. The second moment measures
the fluctuations of the connectivity distribution. The degree distribution com-
pletely determines the statistical properties of uncorrelated networks. However a

large number of real networks are correlated in the sense that the probability that
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a node of degree k is connected to another node of degree, say k', depends on
k. In these cases, it is necessary to introduce the conditional probability P(k'|k),
being defined as the probability that a link from a node of degree k points to
a node of degree k'. P(k'|k) satisfies the normalization ), P(K'|k) = 1, and
the degree detailed balance condition kP(K'|k)P(k) = k'P(k|k")P (k') [6]. For
uncorrelated graphs, in which P(k'|k) does not depend on k, the detailed balance
condition and the normalization give P(k'|k) = K'P(k")/ (k).

1.2.3 Shortest path lengths, diameter and betweenness

Shortest paths play an important role in the transport and communication within
a network. For such a reason, shortest paths have also played an important role
in the characterization of the internal structure of a graph [7]. It is useful to
represent all the shortest path lengths of a graph G as a matrix D in which the
entry d;; is the length of the geodesic from node i to node j. The maximum value
of d;; is called the diameter of the graph, and will be indicated in the following as
Diam(G). A measure of the typical separation between two nodes in the graph
is given by the average shortest path length, also known as characteristic path

length, defined as the mean of geodesic lengths over all couples of nodes [9]:

1
L= % 4, (1.3)
N(N -1 “
( ) ijEN i#j
A problem with this definition is that L diverges if there are disconnected com-
ponents in the graph. One possibility to avoid the divergence is to limit the
summation in formula (1.3) only to couples of nodes belonging to the largest
connected component [9]. An alternative approach, that is useful in many cases,

is to consider the harmonic mean [11] of geodesic lengths, and to define the so-
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Figure 1.2: An important graph property is the degree distribution function P(k),
that describes the probability to find a node with k£ edges. A random graph is
constructed by randomly linking N nodes with K edges, and has a Poissonian

degree distribution (P (k) = e‘<k><]f€—>!k). That means that the majority of nodes
have a degree close to the average degree (k). A scale-free graph is instead
characherized by a power-law degree distribution (P(k) = Ak~ usually with
2 < v < 3). A power-law distribution appears as a straight line in a double-
logarithmic plot. In a scale-free graph, low degree nodes are the most frequent
ones, but there are also a few highly connected nodes, usually called hubs, not

present in a random graph.

called efficiency of G as [12, 13]:

(1.4)

Such a quantity is an indicator of the traffic capacity of a network, and avoids
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the divergence of formula (1.3), since any couple of nodes belonging to discon-
nected components of the graph yields a contribution equal to zero to the sum-
mation in formula (1.4).

The communication of two non-adjacent nodes, say j and k, depends on the
nodes belonging to the paths connecting j and k. Consequently, a measure of the
relevance of a given node can be obtained by counting the number of geodesics
going through it, and defining the so-called node betweenness. Together with the
degree and the closeness of a node (defined as the inverse of the average distance
from all other nodes), the betweenness is one of the standard measures of node
centrality, originally introduced to quantify the importance of an individual in
a social network [7, 10, 14]. More precisely, the betweenness b; of a node i,

sometimes referred to also as load, is defined as [7, 10]:

by = Z n]k(l) ’ (15)

n .
GkEN, kIR

where n,j, is the number of shortest paths connecting ¢ and j, while n;4(7) is the
number of shortest paths connecting ¢ and j and passing through 1.

The concept of betweenness can be extended also to the edges. The edge
betweenness is defined as the number of shortest paths between pairs of nodes

that run through that edge [15].

1.2.4 Clustering

Clustering, also known as transitivity, is a typical property of acquaintance net-
works, where two individuals with a common friend are likely to know each other
[7]. In terms of a generic graph G, transitivity means the presence of a high
number of triangles. This can be quantified by defining the transitivity T of the

graph as the relative number of transitive triples, i.e. the fraction of connected
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triples of nodes (triads) which also form triangles [8]:

T 3 x # of triangles in G

_ 1.6
# of connected triples of vertices in G (16)

The factor 3 in the numerator compensates for the fact that each complete tri-
angle of three nodes contributes three connected triples, one centered on each of
the three nodes, and ensures that 0 < 7' <1, with T'=1 for Ky.

An alternative possibility is to use the graph clustering coefficient C, a mea-
sure introduced by Watts and Strogatz [9], and defined as follows. A quantity ¢;
(the local clustering coefficient of node 1) is first introduced, expressing how likely
ajm = 1 for two neighbors j and m of node 7. Its value is obtained by counting
the actual number of edges (denoted by ¢;) in G; (the subgraph of neighbors of
i). Notice that G; can be, in some cases, unconnected. The local clustering coef-
ficient is defined as the ratio between e; and k;(k; — 1)/2, the maximum possible

number of edges in G; [9]:

2 i 'ma'i'a"ma'mi
G =G 2eim G4y By (1.7)
ki(ki — 1) ki(k; — 1)

The clustering coefficient of the graph is then given by the average of ¢; over all

the nodes in G:

C:<c>:%Zci : (1.8)

eN
By definition, 0 < ¢; < 1, and 0 < C' < 1. It is also useful to consider c¢(k),
the clustering coefficient of a connectivity class k, which is defined as the average
of ¢; taken over all nodes with a given degree k. An alternative measure of the

clustering properties of G is the local efficiency, defined as [12, 13]:

1
Eloc - N Z E(Gz) ; (19)
1eEN
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where E(G;) is the efficiency of G;, evaluated by formula (1.4).

1.3 Topology of real networks

Many systems in nature and in technology are made by a large number of highly
interconnected dynamical units. Coupled biological and chemical systems, neural
networks, social interacting species, the Internet or the World Wide Web, are
only a few such examples. The first approach to capture the global properties of
such systems is to model them as graphs whose nodes represent the dynamical
units (for instance the neurons in the brain or the individuals in a social system)
and the links stand for the interactions between the units. Of course, this is a
very strong approximation, since it means translating the interaction between
two dynamical units, which is usually depending on time, space and many more
other details, into a simple binary number: the existence or not of a link between
the two corresponding nodes. Nevertheless, in many cases of practical interest,
such an approximation provides a simple but still very informative representation
of the entire system.

During the last decade, the grown availability of large databases, the opti-
mized rating of computing facilities, as well as the development of powerful and
reliable data analysis tools, have constituted a better and better machinery to ex-
plore the topological properties of several networked systems from the real world.
This has allowed to study the topology of the interactions in a large variety of
systems as diverse as communication, social and biological systems. The main
outcome of this activity has been to reveal that, despite the inherent differences,
most of the real networks are characterized by the same topological properties,
as for instance relatively small characteristic path lengths, high clustering coeffi-

cients, fat tailed shapes in the degree distributions, degree correlations, and the
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presence of motifs and community structures. All these features make real net-
works radically different from regular lattices and random graphs, the standard
models studied in mathematical graph theory. This has led to a large atten-
tion towards the understanding of the evolution mechanisms that have shaped
the topology of a network, and to the design of new models retaining the most

significant properties empirically observed.

1.3.1 The small-world property

The study of several dynamical processes over real networks has pointed out
the existence of shortcuts, i.e. bridging links that connect different areas of the
networks, thus speeding up the communication among otherwise distant nodes.

In regular hypercubic lattices in D dimensions, the mean number of vertices
one has to pass by in order to reach an arbitrarily chosen node, grows with the
lattice size as N/, Conversely, in most of the real networks, despite of their often
large size, there is a relatively short path between any two nodes. This feature
is known as the small-world property and is mathematically characterized by an
average shortest path length L, defined as in equation (1.3), that depends at most
logarithmically on the network size N [9]. This property was first investigated, in
the social context, by Milgram in the 1960s in a series of experiments to estimate
the actual number of steps in a chain of acquaintances [7, 16, 17].

In its first experiment, Milgram asked randomly selected people in Nebraska
to send letters to a distant target individual in Boston, identified only by his
name, occupation and rough location. The letters could only be sent to someone
whom the current holder knew by first name, and who was presumably closer to
the final recipient. Milgram kept track of the paths followed by the letters and of
the demographic characteristics of their handlers. Although the common guess

was that it might take hundreds of these steps for the letters to reach their final
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destination, Milgram’s surprising result was that the number of links needed to
reach the target person had an average value of just six.

The small-world property has been observed in a variety of other real net-
works, including biological and technological ones, and is an obvious mathemat-
ical property in some network models, as for instance in random graphs. At
variance with random graphs, the small-world property in real networks is often
associated with the presence of clustering, denoted by high values of the cluster-
ing coefficient, defined as in equation (1.8). For this reason, Watts and Strogatz,
in their seminal paper, have proposed to define small-world networks as those
networks having both a small value of L, like random graphs, and a high cluster-
ing coefficient C like regular lattices [9]. In the efficiency-based formalism, such
a definition corresponds to networks having a high value of global efficiency Eg,
defined as in equation(1.4), and a high value of local efficiency FEj,., defined as
in equation (1.9), i.e. to networks extremely efficient in exchanging information

both at a global and at a local scale [12, 13].

1.3.2 Scale-free degree distributions

The usual case until a few years ago was that of homogeneous networks. Homo-
geneity in the interaction structure means that almost all nodes are topologically
equivalent, like in regular lattices or in random graphs. In these latter ones, for
instance, each of the N(IN — 1)/2 possible links is present with equal probability,
and thus the degree distribution is binomial or Poisson in the limit of large graph
size (see sec. 1.4.1). It is not startling then that, when the scientists approached
the study of real networks from the available databases, it was considered rea-
sonable to find degree distributions localized around an average value, with a
well-defined average of quadratic fluctuations. In contrast with all the expectan-

cies, it was found that most of the real networks display power law shaped degree
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distribution P(k) ~ Ak™7, with exponents varying in the range 2 < v < 3. The
average degree < k > in such networks is therefore well defined and bounded,
while the variance 0? =< k? > — < k >? is dominated by the second moment of

the distribution that diverges with the upper integration limit k,,,. as:

max

k’!?L(L"L‘
< k? >:/ EP(k) ~ k> . (1.10)

k'rnin

Such networks have been named scale-free networks [19, 18], because power-laws
have the property of having the same functional form at all scales. In fact, power-
laws are the only functional form f(z) that remains unchanged, apart from a
multiplicative factor, under a rescaling of the independent variable x, being the
only solution to the equation f(ax) = [f(x). Power-laws have a particular role
in statistical physics because of their connections to phase transitions and frac-
tals. In the following, when referring to scale-free networks, we will denote the
class of graphs with power-laws in the degree distribution. Of course, this does
not necessarily implies that such graphs are scale-free with respect to other mea-
surable structural properties. These networks, having a highly inhomogeneous
degree distribution, result in the simultaneous presence of a few nodes (the hubs)

linked to many other nodes, and a large number of poorly connected elements.

1.4 Networks models

What has been said in the previous section clearly motivates the introduction
of new concepts and models. In this section, we focus on some mathematical
models of networks and some algorithms which have been used for the application

described in the last chapter of this work.
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1.4.1 Random graphs

The systematic study of random graphs was initiated by Erdos and Rényi in
1959 with the original purpose of studying, by means of probabilistic methods, the
properties of graphs as a function of the increasing number of random connections.
The term random graph refers to the disordered nature of the arrangement of links
between different nodes. In their first article, Erdos and Rényi proposed a model
to generate random graphs with N nodes and K links, that we will henceforth
call Erdos and Rényi (ER) random graphs and denote as G'f. Starting with N
disconnected nodes, ER random graphs are generated by connecting couples of
randomly selected nodes, prohibiting multiple connections, until the number of
edges equals K [20]. We emphasize that a given graph is only one outcome of the
many possible realizations, an element of the statistical ensemble of all possible
combinations of connections. For the complete description of Gﬁf}{ one would
need to describe the entire statistical ensemble of possible realizations, that is, in
the matricial representation, the ensemble of adjacency matrices. An alternative
model for ER random graphs consists in connecting each couple of nodes with a
probability 0 < p < 1. This procedure defines a different ensemble, denoted as
Gﬁg and containing graphs with different number of links (not exactly K links).
The two models coincide in the limit of large V. Notice that the limit N — oo
is taken at fixed (k), which corresponds to fixing 2K /N in the first model and
p(N —1) in the second one. Although the first model seems to be more pertinent
to applications, analytical calculations are easier and usually are performed in
the second model.

ER random graphs are the best studied among graph models, although they
do not reproduce most of the properties of real networks discussed in section 1.3.

The structural properties of ER random graphs vary as a function of p showing,
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in particular, a dramatic change at a critical probability p. = %, corresponding

to a critical average degree (k). = 1. Erdos and Rényi proved that:

e if p < p., then almost surely, i.e. with probability tending to one as N
tends to infinity, the graph has no component of size greater than O(In N),

and no component has more than one cycle;
e if p = p,, then almost surely the largest component has size O(N?%/3);

e if p > p., the graph has a component of O(N) with a number O(N) of
cycles, and no other component has more than O(In N) nodes and more

than one cycle.

The transition at p. has the typical features of a second order phase transi-
tion. In particular, if one considers as order parameter the size of the largest
component, the transition falls in the same universality class as that of the mean
field percolation transitions. Erdos and Rényi studied the distribution of the
minimum and maximum degree in a random graph [20], while the full degree
distribution was derived later by Bollobés [4]. The probability that a node i has
k = k; edges is the binomial distribution P(k; = k) = C%_,pF(1—p)V~17* where

)N—l—k

p¥ is the probability for the existence of k edges, (1 —p is the probability

N-—-1
for the absence of the remaining N — 1 — k edges, and C% | = is
k

the number of different ways of selecting the end points of the k edges. Since all
the nodes in a random graph are statistically equivalent, each of them has the
same distribution, and the probability that a node chosen uniformly at random
has degree k has the same form as P(k; = k). For large N, and fixed (k), the

degree distribution is well approximated by a Poisson distribution:

P(k) = e‘<k>@ : (1.11)
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Randomness

Figure 1.3: Small-world networks, as defined by Watts and Strogatz [9], have
intermediate properties between regular lattices (such as the first graph in the
figure) and random networks (such as the last graph in the figure). A regular
lattice has high clustering but also a large average path length, while a random
graph is characterized by a short path length together with a low clustering.
A small-world network (in the middle in the figure) borrows a high clustering
coefficient from the former and a short average path length from the latter.

For this reason, ER graphs are sometimes called Poisson random graphs. ER
random graphs are, by definition, uncorrelated graphs, since the edges are con-
nected to nodes regardless of their degree. Consequently, P(k'|k) and k., (k) are
independent of k.

1.4.2 Small-world networks

The Watts and Strogatz (WS) model is a method to construct graphs, denoted
as G]V\[,/f( having either the small-world property and a high clustering coefficient
[9]. The model is based on a rewiring procedure of the edges implemented with
a probability p. The starting point is a N nodes ring, in which each node is
symmetrically connected to its 2m nearest neighbors for a total of K’ = m/N edges.
Then, for every node, each link connected to a clockwise neighbor is rewired to
a randomly chosen node with a probability p, and preserved with a probability
1 — p. Notice that for p = 0 we have a regular lattice, while for p = 1 the model

produces a random graph with the constraint that each node has a minimum
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Figure 1.4: Characteristic path length L(p) and clustering coefficient C'(p) for
the family of randomly rewired graphs desribed in Fig. 1.3. Here L is defined
as the number of edges in the shortest path between two vertices, averaged over
all pairs of vertices. The clustering coefficient C(p) is defined as described in
(1.8). The data shown in the figure are averages over 20 random realizations of
the rewiring process described in Fig.1.3, and have been normalized by the values
L(0), C(0) for a regular lattice. All the graphs have N = 1.000 vertices and an
average degree of kK = 10 edges per vertex. Notice that a logarithmic horizontal
scale has been used to resolve the rapid drop in L(p), corresponding to the onset
of the small-world phenomenon. During this drop, C(p) remains almost constant
at its value for the regular lattice, indicating that the transition to a small world
is almost undetectable at the local level.

connectivity k,,;, = m. For intermediate values of p the procedure generates
graphs with the small-world property and a non-trivial clustering coefficient.
The small-world property results from the immediate drop in L(p) as soon as p
is slightly larger than zero. This is because the rewiring of links creates long-range
edges (shortcuts) that connects otherwise distant nodes. The effect of the rewiring
procedure is highly nonlinear on L, and not only affects the nearest neighbors

structure, but it also opens new shortest paths to the next-nearest neighbors and
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t=1 t=2 t=3

Figure 1.5: Illustration of the BA algorithm for mg = 3 and m = 2. Att =10
we start with a complete graph of mgy nodes. At every timestep a new node j is
added, which is connected to m = 2 vertices, preferentially to the vertices with
high connectivity, determined by the rule (1.12). Thus, at time ¢ there are mg+t

vertices and (";“) + mt edges. At each time step, the new node n is in cyan, and

the two new edges are drawn with dashed lines.

so on. Conversely, an edge redirected from a clustered neighborhood to another
node has, at most, a linear effect on C. That is, the transition from a linear to a
logarithmic behavior in L(p) is faster than the one associated with the clustering
coefficient C'(p). This leads to the appearance of a region of small (but nonzero)

values of p, where one has both small path lengths and high clustering.

1.4.3 Barabasi-Albert model

The Barabdsi-Albert (BA) model is a model of network growth inspired to the
formation of the World Wide Web and is based on two basic ingredients: growth
and preferential attachment [18]. The basic idea is that in the World Wide
Web, sites with high degrees acquire new links at higher rates than low-degree
nodes. More precisely, an undirected graph Gﬁf}{ with average degree (k = 2m) is
constructed, starting with a complete graph with a small number N (¢ = 0) = m0
of nodes and K (t = 0) = (mo) links. The graph growth obeys the two mechanisms

2
illustrated in Fig. 1.5
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e At each timestep ¢t (t =1, 2, 3,...) anew node j is added. The new node
has m < my edges, that link 5 to m different nodes, already present in the

system;

e When choosing the nodes to which the new node j connects, it is assumed
that the probability II;_.; that n will be connected to node i is linearly

proportional to the degree k; of node 1, i.e.:

ki
I, = ) 1.12
J Zl kl ( )
After t time steps, the algorithm results in a graph with:
N(t) = N(@t=0)+t nodes (1.13)
K(t) = K(t=0)+mt edges (1.14)

For large times, this corresponds to a graph with an average degree k = 2m. The
procedure is iterated until the desired final number of nodes N is reached.

The BA model has been solved in the mean-field approximation [18, 21] and,
exactly, by means of rate equation [22] approach. In the limit ¢ — oo, the model

produces a degree distribution P(k) ~ k=7, with an exponent v = 3. The case

1

of a growing network with a constant attachment probability II;_,; = e |

produces, instead, a degree distribution P(k) = < exp(—%). This implies that
the preferential attachment is an essential ingredient of the model.

The average distance in the BA model is smaller than in a ER-random graph
with same N and K, and increases logarithmically with N [19]. The clustering
coefficient vanishes with the system size as C' ~ N~%7_ This is a slower decay
than that observed for random graphs, C' ~ N~!, but it is still different from the

behavior in small-world models, where C' is a constant independent of N.
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i

(b)

Figure 1.6: In the preferential attachment step (a) the new vertex v chooses a
vertex u to attach to with a probability proportional to its degree. In the triad
formation step (b) the new vertex v chooses a vertex w in the neighborhood of
the one linked to in the previous preferential attachment step. x symbolizes
“not-allowed to attach to” (either since no triad would be formed, or that and
edge already exists).

The BA model has attracted an exceptional amount of attention in the lit-
erature. In addition to analytic and numerical studies of the model itself, many
authors have proposed modifications and generalizations to make the model a
more realistic representation of real networks [19]. Various generalizations, such
as models with nonlinear preferential attachment, with dynamic edge rewiring,
fitness models and hierarchically and deterministically growing models, can be
found in the literature. Such models yield a more flexible value of the exponent
~ which is restricted to 7 = 3 in the original BA construction. Furthermore,
modifications to reinforce the clustering property, which the BA model lacks,
have also been considered. In next section we will discuss one of the last kind
of models, the Holme-Kim model, as we will be intersted in studying how the

clustering coefficient affect some games on graphs (see 3).

1.4.4 Holme-Kim model

The model proposed by Holme and Kim (HK model) [23] produces scale-free

graphs with a tunable clustering coefficient. In order to achieve this, the model
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Figure 1.7: Clustering coefficient versus my, which is a quantity proportional to
p and defined as m; = (m — 1)p. It is evident the presence of a linear relation
between these two quantities.

modifies slightly the BA model described in the previous section. The algorithm

works as follows (see also Fig. 1.6):

1. the networks are constructed via a growing process that starts from an
initial core of mg nodes, like in the BA model. At each time step, a new
node i (i =mg+1,mg+2,...,N) is added to the network and is linked to

m (with m < my) of the previously existent nodes;

2. the first link of the m to be drawn follows always a preferential attachment
rule like (1.12) and is connected to a node j (preferential attachment step

or PA step);
3. the remaining m — 1 links are attached in two different ways:

e with probability p the new node ¢ is connected to a randomly chosen
neighbor of the node j, that is to say the first node to which ¢ was
attached (triad formation step or TF step);

e with probability 1 — p the node i is attached doing another PA step,
that is to say it is connected to one of the previoulsy existent nodes

following (1.12)
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With such a procedure, once fixed the values of m and mg, one obtains scale-
free networks with exponent v ~ 3 and a tunable clustering coefficient depending
on the value of p. In particular, for p = 0 the model coincides with the BA
one (section 1.4.3 and [18]) where the clustering coefficient tends to zero as the
network size N goes to infinity. For values of p > 0 the clustering coefficient

grows monotically with p (See Fig. 1.7 ).
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An introduction to game theory

and evolutionary games

Game theory is the unifying paradigm behind many scientific disciplines. It is
a set of analytical tools and solution concepts, which provide explanatory and
predicting power in interactive decision situations, when the aims, goals and pref-
erences of the partecipating players are potentially in conflict. It has successful
applications in diverse fields such as evolutionary biology and psychology, com-
puter science and operation research, political science and military strategy, cul-
tural anthropology, ethics and moral philosophy, economics. The cohesive force of
the theory stems from its mathematical structure which allows the practitioners
to abstract away the common strategic essence of the actual biological, social or
economic situation. Game theory creates a unified framework of abstract models
and metaphors, together with a consistent methodology, in which these problems
can be recast and analyzed.

The appearance of game theory as an accepted physics research field is a
relatively late event. It required the mutual reinforcing of two important factors:

the opening of physics, especially statistical physics, towards new interdisciplinary

26
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research directions, and the sufficient maturity of game theory itself in the sense
that it had started to tackle into complexity problems. Two new disciplines, socio-
and econophysics were born, and the already existing field of biological physics
got a new impetus with the clear mission to utilize the theoretical machinery of
physics for making progress in questions whose investigation were traditionally
connected to the social sciences or economics, and were formulated to a large
extent using classical and evolutionary game theory.

In this chapter we present a brief introduction to some general concept of
game theory and of evolutionary games. We will use some of these concepts
in the following chapter, where evolutionary game theory is put in relation with
complex networks in order to understand how particular topologies and dynamics

affect the results obtained using mean-field evolutionary game theory.

2.1 Overview

2.1.1 Classical game theory and its assumptions

Classical (rational) game theory is based upon a number of assumptions about
the structure of a game. Game theory assumes that agents (players) have well
defined goals and preferences which can be described by a utility function. The
utility is the measure of satisfaction the player derives from a certain outcome of
the game, and the player’s goal is to maximize her utility. Maximization (or min-
imization) principles abound in science. It is, however, important to underline
that the maximization problem of game theory differs from the one of physics.
In a physical theory the standard situation is to have a single function (say, a
Hamiltonian or a thermodynamic potential) whose extremum condition charac-
terizes the whole system. In game theory the number of functions to maximize

is typically as much as the number of interacting agents. While physics tries to
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optimize in a fixed landscape, the agents of game theory continuously restructure
the landscape for each other in pursuit of their selfish individual optimum.

Another key assumption in the classical theory is that players are perfectly
rational and this is common knowledge. “Perfect rationality” means that the
players have well defined payoff functions, and they are fully aware of their own
and the opponents’ strategy options and payoff values. They have no cognitive
limitations in deducing the best possible way of playing whatever the complexity
of the game is. In this sense computation is costless and istantaneous. “Common
knowledge” implies that beyond the fact that all players are rational, they all
know that all players are rational, and that all players know that all players are
rational, etc.

Rationality, however, seems to be an ill-defined concept. There are extreme
opinions arguing that the notion of perfect rationality is not more than pure
tautology: rational behavior is the one which complies with directives of game
theory, which in turn is based on the assumption of rationality. Any working
definition of rationality is a negative definition, not telling us what rational agents

do, but rather what they do not.

2.1.2 Post-Nash game theory

The post-Nash history of game theory is mostly the history of refinements. The
Nash equilibrium concept seems to have enough predicting power in static games
with complete information. The two mayor streams of extensions are toward
dynamic games and games with incomplete information. Dynamic games are
the ones where the timing of decision making plays a role. In these games the
simple Nash equilibrium concept would allow outcomes which are based on non-
credible threats or premises. In order to exclude these spurious equilibria the

concept of a subgame perfect Nash equilibrium has been introduced (see 2.3.1).
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It requires Nash-type optimality in all possible games. Incomplete information,
on the other hand, means that the players’ available strategy sets and associated
payoffs (utility) are not common knowledge®.

Despite the undoubted success of classical game theory, the parasigm has soon
shown its limitations. In many specific cases further progress seemed to rely upon
the relaxation of some of the key assumptions. A typical example where rational
game theory seems to give an inadequate answer is the “backward induction para-
dox” related to repeated (iterated) social dilemmas like the Repeated Prisoner’s
Dilemma. According to game theory the only subgame perfect Nash equilibrium
in the finitely repeated game is the one determined by backward induction, i.e.,
when both players defect in all rounds. Nevertheless, cooperation is frequently
observed in real-life psycho-economic experiments [45, 48]. This result either sug-
gests that the abstract Prisoner’s Dilemma game is not the right model for the
situation or that the players do not fulfill all the assumptions. Indeed, there are
good reasons to believe that many realistic problems, in which the effect of an
agent’s action depends on what other agents do, are more complex and perfect
rationality of the players can’t be postulated. The standard deductive reasoning
looses its appeal when agents have non-negligible cognitive limitations, there is a
cost of gathering information about possible outcomes and payoffs or the agents
do not have consistent preferences. A possible way out is inductive reasoning, i.e.
a trial-and-error approach,in which agents continuously form hypotheses about
their environment, build strategies accodingly, observe their performance in prac-

tice and verify or discard their assumptions based on empirical success rates. In

Incomplete information differs from the similar concept of imperfect information. The latter
refers to the case when some of the history of teh game is unknown to the players at the time
of decision making. For example Chess is a game with perfect information because players
know the whole previous history of the game, whereas the Prisoner dilemma is a game with
imperfect information due to the simultaneity of the players’ decisions. Nevertheless, both are
games with complete information
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this approach the outcome, or in other words the solution, of a problem is deter-
mined byt the evolving mental state (mental representation) of the constituting
agents. Mind necessarily becomes an endogenous dynamic variable of the model.
This kind of bounded rationality may explain that in many situation people re-
spond instinctively, play according to heuristic rules and social norms rather than

adopting the strategies indicated by rational game theory.

2.1.3 Bounded rationality and evolutionary game theory

Bounded rationality become a natural concept when the goal of the theory is
to understand animal behaviour. Individuals in an animal population do not
make concious decisions about strategy, even though the incentive structure of
the underlying formal game they “play” is identical to the ones discussed are
genetically coded and maintained during the whole life-cycle, the strategy space
is constrained, or strategy adoption or change is severely restricted by biologi-
cally predetermined learning rules or mutation rates. The success of a strategy
applied is measured by biological fitness, which is usually related to reproductive
success. Fvolutionary game theory is an extension of the classical paradigm to-
ward bounded rationality. There is however another aspect of the theory which
has been left out in the classical approach, but gets special emphasis in the evo-
lutionary version, namely dynamics. Dynamical issues were mostly neglected
classically, because the assumption of perfect rationality made such questions
irrelevant. Full deductive rationality allows the players to derive and construct
the equilibrium solution instantaneously. In this spirit when dynamic methods
were still applied they only served as a technical aid for deriving the equilibrium.
Bounded rationality, on the other hand, is inseparable from dynamics. Con-
trary to perfect rationality, bounded rationality is always defined in a apositive

way, postulating what boundedly rational agents do. These behavioral rules are
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dynamic rules, specifying howmuch of the game’s earlier history is taken into
consideration (memory), how long agents would think ahead (short sightdness),
how they search for available strategies (search space), how they switch for more
successful ones (adaptive learning), and what all these mean at the population
level in terms of frequencies of strategies.

There is a static and a dynamic perspective of evolutionary game theory. The
evolutionary stability of a Nash equilibrium is a static concept which does not
require solving time-dependent dynamic equations. In simple terms evolutionary
stability means that a rare mutant cannot successfully invade the population.
The condition for evolutionary stability can be checked directly without incurring
complex dynamic issues. The dynamic perspective, on the other hand, operates
by explicitly postulating dynamical rules. These rules can be prescribed as deter-
ministic rules at the population level for the rate of change strategy frequencies or
as microscopic stochastic rules at the agent level (agent-based dynamics). Since
bounded rationality may have different forms, there are many different dynamical
rules one can consider. The most appropriate dynamics depends on the specificity
of the actual biological or socio-economical situation under study. For example,
in biological applications the Replicator Dynamics is the most natural choice; the
rule is derived by assuming that payoffs are directly related to reproductive suc-
cess. Socio-economic applications may require other adjustment or learning rules.
Both the static and dunamic perspective of evolutionary game theory provide a
basis for equilibrium selection when the classical form of the game has multiple

Nash equilibria.

2.1.4 Beyond evolutionary game theory

The mission of evolutionary games theory was to remedy three key deficiencies

of the classical theory: (1) bounded rationality, (2) the lack of dynamics and
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(3) equilibrium selection in the case of multiple Nash equilibria. Although this
mission was accomplished rather successfully, there was a series of weaknesses
remaining. Evolutionary game theory in its early form considered population dy-
namics on the aggregate level. All the variables are averaged over the population
(for example relative strategy abundances). Behavioral rules, on the other hand,
control the system at the microscopic level (agent level). Agent decisions are fre-
quently asynchronous, discrete and may contain stochastic elements. Moreover
agents may have different individual preferences, payoffs, strategy options or be
locally connected to well-defined other agents. All this requires for the theory
some improvements and some refinements that can be achieved by coupling the

evolutionary game theory with the theory of complex networks (see chapter 3).

2.2 Games, payoff, strategies

2.2.1 Notation

A game is an abstract formulation of an interactive decision situation with pos-
sibly conflicting interests. The normal (strategic) form representation of a game
specifies the players of the game, their feasible actions (to be called pure strate-
gies), and the payoffs received by them for each possible combination of ac-
tions (the action or strategy profile) that could be chosen by the players. Let
n =1,..., N denote the players; S, = {em, gy« - enQ} the set of pure strate-
gies available to player n, with s,, € S,, an arbitrary element of this set; s1,..., sy
a given strategy profile of all players; and u, (s1,...,sy) player n’s payoff func-
tion (utility function), i.e., the measure of her satisfaction if the strategy profile

(s1,...,5n) gets realized. Such a game can be denoted as G = {S;,...,Sn;u, ..

. ,UN}.
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2.2.2 Matrix form

When there are only two players n = 1,2 and the set of available strategies is
discrete, &1 = {eq,ea,...,eq}, S2 = {f1, f2, ..., fr}, the game can be written in
a bi-matrix form G = (A, BT), which is a shortband for the payoff table:

player 2
fi e fr
er | (A, BY) e (Air, BL,) (2.1)
player 1 : ' :
eq | (A1, B) . (Agr, BbR)

Here the matrix A;; = u(e;, f;) denotes player 1’s payoff for the strategy
profile (e;, f;). Two-players games can be symmetric (so-called matriz games) and
asymmetric (bi-matriz games), with simmetry referring to the roles of players.
For a symmetric game R = @ and B = A. In this case the game is fully

characterized by the single payoff matrix A and we can formally write G =

(A, AT).

2.2.3 Strategies

The strategies that label the payoff matrices are pure strategies. In many games,
however, players can also play mized strategies, which are probability distributions
over pure strategies. Playing a mixed strategy means that in each decisione
instance the player comes up with one of her feasible actions with a certain pre-
assigned probability. Each mixed strategy corresponds to a point p of the mized

strateqy simplex:
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Q
AQ:{p:(pl,...,pQ)GRQ:quO,quzl} (2.2)
qg=1

whose corners are the pure strategies.
A strategy s! of player ¢ is a strictly dominant strategy if for each strategy

profile s_; = s1,...,8;-1,Si+1,- ..,y of the co-players happens:
wi (s7,8-1) > u; (8, s;) Vs_y, 8. #s; (2.3)
The strategy s, is dominated if there exists s/ € S; such that:
wi (8, s-5) > (s, s-) Vs (2.4)

Dominance is important because, if utility payoff are correctly specified and play-
ers care only about their own utility, there is no good reason to violate strict
dominance. One step of iterated dominance is a judgement by one player that
the other player will not make a dumb mistake. This often tells a player what
she herself should do.

2.2.4 Nash Equilibrium

The strategy profile s* = (sf,s*_i) is a Nash equilibrium (NE) if each player’s
strategy is a best response to the other players’ strategies. That is, no player has
incentive to deviate, if no other player will deviate (if players find themselves in
equilibrium, there is no reason to move away). Formally this can be expressed
as:

u; (sf,8%;) >u; (sh,s%;) Vs, (2.5)

2

When the inequality above is strict, s* is called a strict Nash equilibrium. One
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of the most fundamental results of classical game theory is Nash’s theorem, which
asserts that in normal-form games with a finite number of players and a finite
number of pure strategies there exists at least one NE, possibly involving mixed

strategies.

2.3 Repeated Games

Most of the inter-agent interactions that can be modelled by abstract games
are not one-shot relationships but occur repeatedly on a regular basis. When a
one-shot game is played between the same rational players iteratively, a single
instance of this series cannot be singled out and trated separately. The whole
series should be analyzed as one big “supergame”. What a player does early on
can affect what others choose to do later on.

Assume that the same game G is played a number of times 7. The set of
feasible actions and payoffs in the game at time ¢ (¢t = 1,...,7T) are independent
from ¢ and from the former history of the game. This does not mean, however,
that actions themselves should be chosen independently from time and history.
When G is played at time t, all the game history so far is common knowledge.
We will denote this repeated game as G(T') and distinguish in finitely repeated
games (T < oo) and infinitely repeated games (T = oo). For finitely repeated
games the total payoff is simply the sum of the game G payoffs:

U=> u (2.6)

In one-shot static games with complete information a strategy is simply an
action a player can choose. For repeated games (and also for other kinds of

dynamic games) the concept of strategy becomes more complex. In these games
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a player’s strategy is a complete plan of action, specifying a feasible action in any

contingency in which the player may be called upon to act.

2.3.1 Subgame perfect Nash equilibrium

What is the prediction of rational game theory for the outcome of a repeated
game? As always the outcome should correspond to a Nash equilibrium: no
player can have a unilateral incentive to change its strategy (in the supergame
sense), since this would induce immediate deviation from that profile. However,
not all NEs are equally plausible outcomes in a dynamic game such as a repeated
game. A stronger concept than Nash equilibrium is needed to exclude these
spurious NEs. Subgame perfection [26] is a widely accepted criterion to solve this
problem. Subgame perfect Nash equilibria are those that pass a credibility test.

A subgame of a repeated game is a subseries of the whole series that starts at
period ¢ > 1 and ends at the last period 1. However, there are many subgames
starting at ¢, one for each possible history of the game before . Thus subgames
are labeled by the starting period ¢ and by the history of the game before t.
Therefore when a subgame is reached in the game the players know the history
of play. By definition a NE of the game is a subgame perfect if it is a NE in all

subgames.
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Ultimatum game on networks

3.1 Merging evolutionary game theory and
complex networks

A number of theoretical approaches have been developed to explain the arising of
human altruism. Kin selection theory [27] accounts for situations in which it pays
off to help relatives that shares some fraction of the genetic pool. In the absence
of such kin relationships, repeated interactions have also been shown to lead to
cooperation, as well as different kinds of reciprocity mechanisms [28, 29, 31, 32].
Recently, a series of behavioral experiments in which interactions are anonymous
and one-shot have shown that humans can punish non-cooperators (altruistic
punishment) and reward those individuals who cooperate (altruistic rewarding)
(28, 33, 34, 35]. This so-called strong reciprocity can actually explain the ob-
served cooperative behavior in terms of group and cultural selection. However,
following standard evolutionary game theory, it is still far from being explained
how cooperation may arise from selection at the individual level. Recent steps in

this direction [37] have contributed to fill this gap, although a general theoretical
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framework is still needed.

In the meanwhile, it is well-known that real-life interaction networks can pos-
sess a rather complex topology, which is far from the traditional mean-field case.
Although the importance of this feature has been widely recognised already a long
time ago, a systematic investigation of these questions is still in the forefront of
research.

Very recently the research of evolutionary games has interfered with the ex-
tensive investigation of networks, because the actual social networks character-
izing human interactions possess highly nontrivial topological properties. The
first results clearly demonstrated that the topological features of these networks
can influence significantly their behaviour. In many cases “games on graphs”
differ qualitatively from their counterparts defined in a well-mixed (mean-field)
population.

This is why in this chapter we will deal with evolutionary games coupled with
complex networks. We will show this way how particular features, as altruism, can
arise by merging a particolar model of evolutionary game theory, the Ultimatum
Game, with the investigation of complex networks. The high number of variables
in the system makes most standard analytical techniques largely inapplicable.
Therefore we will use extensive numerical simulations and analytical techniques

going beyond the traditional mean-field level.

3.2 Ultimatum Game: differences between
theory and experiments

The ultimatum game (UG) is a model extensively used to study altruistic be-
haviour. In the past years it has inspired dozens of theoretical and experimental

investigations. The rules of the game are surprisingly simple. Two players have
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to agree on how to split a sum of money, or in general a reward. One of the two
players acts as proposer and makes an offer. The other player, then, plays the
role of responder and she can either accept or reject the deal. If the responder
accepts, the deal goes ahead. If she rejects, neither player gets anything. Ob-
viously rational responders should accept even the smallest positive offer, since
the alternative is getting nothing (subgame perfect Nash equilibrium solution).
Proposers, therefore, should be able to claim almost the entire sum. In a large
number of human studies, however, conducted with different incentives in differ-
ent countries, the majority of proposers offer 40% to 50% of the total sum, and
about half of all responders reject offers below 30% [40].

The irrational human emphasis on a fair division suggests that players have
preferences which do not depend solely on their own payoff, and that responders
are ready to punish proposers offering only a small share by rejecting the deal
(which costs less to themselves than to the proposers).

Many solutions and explanations have been given to fill this gap between
theory and experiments. Nowak et al. [30], for example, have shown how towards
a mechanism of reputation (the proposer has some information on which deals
the responder has accepted in the past) fairness can evolve. However this result
is obtained in a well-mixed population, without taking in account the possibility
of a microscopic structure or a particular pattern of interactions between agents.
In fact it has been shown that social and biological networks, where the arising
of cooperation is a relevant issue, display properties and structures (e.g. small-
world property, scale-freeness, clustering, etc.) that haven’t been considered in
anyone of the models [41, 3].

In the following sections we study an UG model where:

1. players are placed on the nodes of a graph and play with their neighbors;

2. a selection rule in which the less fitted individuals are replaced together
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with their neighbors is implemented.

We will show that particular properties, far from the ones obtained in the mean-
field approximation, arise, even not introducing a mechanism of reputation, but

as results merely due to the topological characteristics of the networks used.

3.3 Standard ultimatum game on networks: our
model

In our model we consider N individuals associated to the nodes of a graph. At
each time step, each individual plays a round robin with all of its neighbors. In
each round, the individual plays the ultimatum game two times, with a different
role, proposer and responder, on each. The reward to be divided in each game
is equal to 1. An individual ¢ (i = 1,..., N) is characterized by two parameters:
pi, ¢ € [0,1]. When ¢ acts as proposer it offers a division p; of the reward, so
that responder will earn p; if it accepts the proposal. Instead, when agent ¢ plays
as responder, it will accept the offer if it is larger than the acceptance threshold,
¢;- In general, p; and ¢; can be independent. However in the following we will

consider two cases:
L. pi = qi;
2. pi=1-gq.

When two individuals (4, j) bargain, their payoffs, II; and I1;, evolve according

to the following rules:

e Player ¢ offers the amount p; to j. If p; > ¢;, the offer is accepted and

the payoff of ¢ and j are incremented by AHin = (1 —p;) and AHﬁ =
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respectively. Conversely, if p; < g;, agreement is not possible and both

players get nothing and their payoffs remain the same, AHZQj = AH% =0.

e When player ¢ is the responder, the same rules apply. Therefore, upon
agreement, players ¢ and j increase their payoffs by AH{} = p; and AH]-OZ- =
(1 — p;) respectively.

The final payoffs of a node 7 after playing with all its neighbors is II; =
> er(AIIG + AITY), where T; denotes the set of ¢’s neighbors.

In addition to the rules for bargaining, we also implement a selection rule at
the individual level in the same spirit of [37]. At each round, the player with
lowest payoff in the whole population is removed and, moreover, all the agents in
its neighborhood (no matter how wealthy they are) are also removed. The removal
of the neighbors of the poorest agent implements a sort of social punishment
(stigma) reinforced by law. This is quite different from the notion of punishment
by individuals [43] and it is of no direct (differential) cost to individuals. All
the removed agents are replaced in their nodes (so that they only inherit their
contacts) by brand new randomly uniformly distributed p-strategists. With this
evolutionary rule, and regarding evolutionary survival, it is not only important
to earn as much as possible, but also players should take care of the neighbor’s
payoff. If an individual exploits its neighborhood so that she takes a large stake
of the total reward, she would risk to be dropped out of the game as a result
of one of its neighbors being that with the lowest payoff in the population of
players. Consequently, what drives the evolution of the distribution of p values
among the population is the balance between the conflicting interests of earning
more (to avoid being the poorest) and earning less (to avoid being stigmatized).

After the selection rule is implemented the payoffs of the agents are reset to zero.
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3.4 Ultimatum Game on networks

We have implemented both the cases ¢; = p; and ¢; = 1 — p; on random graphs
and on scale-free graphs. The formers have been generated using the Watts and
Strogatz algorithm (see 1.4.2) with the probability of rewiring p set equal to 1
and starting with a lattice where every node is connected to his first 4 neighbors;
the latters have been constructed by using the Barabasi-Albert model (see 1.4.3),
setting m = 2. This way both the degree distribution for random and scale-free
graphs have k,,;, = 2. All the graphs created are constituted by 10* nodes.

Every result we show is averaged over more than 100 different initial conditions
and different graphs and for each of this we follow the evolution of the game for
107 time steps.

For every configuration of ¢ and p and for every kind of graphs used, we report

the plots of the following quantities:

e P(II), the distribution of the payoff at the stationary state (last time step

computed);
e II(k), the average payoff for nodes with the same degree k;
e P(p), the distribution of the values p at different time-steps;

) %—;, the number of nodes removed over the number of nodes with same

degree k.

Other particular quantities and plots will be shown in the detailed study of
a particular configuration or of a particular topology. Particular emphasis has
been given to the study of the configuration p; = 1 — ¢; on scale-free graphs.
The focus on this particular topology is due to the fundamental role scale-free

graphs cover in the modelling of interactions in real-life (see chapter 1), while the
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(a) Random graphs

(b) Scale-free graphs

Figure 3.1: Distribution of payoff II after 107 time steps for (a) random graphs
and (b) scale-free graphs when using the configuration ¢; = p;.

configuration of p and ¢ is taken in account as the most plausible to model the

behaviour of players [30].

3.4.1 Configuration ¢; = p;

In this configuration of ¢ and p, individuals do distinguish among roles, and
moreover adjust the threshold for acceptance when responders with the proposal
when proposers (i.e., ¢; = p;), so as to get half of the total stake on average. In

fact, whatever is the relation between p; and p;, every player will increase her
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payoff in only one round, as proposer or as responder; in the other round in fact
the inequality between p; and p; changes of sign and it is no longer satisfied.
We have first checked the distribution of payoff at the stationary step (in our
simulations after 107 time steps), in order to see if there is a critical value II,.
creating avalanches phenomena like in [36] (see also 3.5) or in the Bak-Sneppen
model [42]. Though the figures 3.1 show that for both ER and SF graphs it
seems to exist a critical value around 2, the study of the avalanches ! show that
there isn’t a self-organized state (that is to say a power-law in distribution of the

avalanche size) but rather a subcritical one.

LAn avalanche in this case is defined as follows: it starts when the lowest payoff gets larger
than a preset critical value II. and stops when it drops below this value. The size, s, of an
avalanche is the number of time steps it lasts.
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Figure 3.2: Distribution of p after 10* (blue circles), 10° (red squares), 10° (green
triangles) and 107 (purple stars) time steps for (a) random graphs and (b) scale-
free graphs when using the configuration ¢; = p;.
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Figure 3.3: Fraction of nodes removed for every degree class in 107 time steps
because minimum payoff nodes (blue circles) or their neighbors (red squares), for
(a) random graphs and (b) scale-free graphs when using the configuration ¢; = p;.
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Figure 3.4: Average payoff for every degree class after 107 time steps for (a)
random graphs and (b) scale-free graphs when using the configuration ¢; = p;.
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3.4.2 Configuration ¢; =1 — p;

We consider also the case in which the offer and the acceptance thresholds are
such that p; + ¢; = 1. This amounts to consider that players do not establish
correlations between role played and expectations, i.e. they do not differentiate
between roles. They are role-ignoring agents that only accept, as responders,
proposals above what they get when proposers, ¢; = 1 — p; [30].

Note that both players will gain as proposers and responders only if the con-
dition p; + p; > 1 is verified. In this case, their payoffs are incremented by
ATIY + ATIf = (1—p;) +p; and AII§, + AIIE = (1 —p;) 4 pi. Therefore, the final
payoffs of a node 7 after playing with all its neighbors is IT; = »°, (AT + AILY),
where I'; denotes the set of ¢’s neighbors.

We have first monitored the payoff distribution and seen, as for the configu-
ration ¢; = p; that there is not a power-law distribution of avalanches. Instead,
a particular phenomenon arising in this configuration is the presence of some
“resonance peaks” in the payoff distribution for the random graphs. This peaks
appear to be in correspondence to integer values of payoff. In order to under-
stand this peculiarity, we have plotted how many nodes for every degree class
own a certain integer payoff (Il =3, Il =4, Il = 5,...), as shown in fig. 3.5. The
figure explains the presence of the peaks in the payoff distribution: the payoff
is in relation with the degree, and in particular there is a high probability that
a node of degree k owns a payoff II = k, that is to say it is high probable that
there is a compensation effect for which every agent gains on average a number
of “whole” rewards equal to her degree.

Then we have studied the evolution of the offers made by players by looking
at the distribution P(p) (i.e., how frequently a player proposes an amount p
to its neighbors) over time. In Fig. 3.7 we report the distributions P(p) after
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Figure 3.5: Number of nodes for every degree class holding payoff equal to three
(blue circles), to four (red squares), to five (green triangles), to six (purple stars)
and to seven (orange rhombus).

10% and 107 time steps for ER and SF topologies. From the figure it is evident
that, for both ER and SF networks, the distribution P(p) becomes stationary
after a time no longer than 10° time steps. The stationary distributions P(p)
for ER and SF networks show the same average value for the offers (p) ~ 0.5.
This points out, as observed in several experiments [40] the absence of rational
behavior of players in both kind of network topologies. Though of equal average
value, the distribution densities are strikingly different for both kind of networks.
While P(p) is almost flat, slowly decreasing at extremes (p < 0.2 and p > 0.8)
for the ER network, it is bimodal for the SF network (peaked at p ~ 0.3 and
p ~ 1). We see how the degree-heterogeneity of the network of interactions
promotes a very different microscopic balance of conflicting aims, as reflected in
the bimodal P(p), respect to the mostly uniform density of strategies observed in
near homogeneous networks (ER). Moreover, the degree of a node and its strategy
are strongly correlated as shown in fig. 3.10.

In fig. 3.12, where we have plotted the probability that a node with degree
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k is removed both as a consequence of being it the one with the lowest payoff in
the population, or because it is a neighbor of the less fitted individual. In turns
out that the altruistic behavior of the hubs increases their chances to remain in
the game. Moreover, highly connected individuals are never exposed to direct

extinction.

A semi-analytical approach

We now concentrate on the role that degree heterogeneity plays in the microscopic
segregation, i.e. appearance of peaks in P(p). Given that the relation p; +p; > 1
between the offers of two players ¢ and j assures nonzero reward to both players,
it is possible to show that, the way in which such a successful combination of the
two offers is achieved, is strongly related to the degrees k; and k;.

Let us define the ”interacting degree” of node i at time t, k"*(¢), as the number
of neighbors of ¢ with whom it interacts (i.e. those satisfying p; + p; > 1, the
interacting neighborhood). If we consider the situation k; > 1 (say a hub in a SF
network), then under the assumption that p is distributed in the neighborhood

of i following the same distribution as in the whole network, we obtain:

k(1) =k, /11 P(p)dp = ki (1— F(1—py) | (3.1)

—Pi

where F is the (cumulative) distribution function of P(p). Under the same as-

sumptions, it follows that the payoff received by a hub is

I, = ky [1— F(1— py)] {(1 — ) + /:php dF] , (3.2)

where the integral is the average of p in the ”interacting” neighborhood of the
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hub. Provided that this average is larger than 6,/ky,, the limit when p, — 1 is

lim II, > Hb . (33)

pr—1

If 6, is an upper bound of min; I1;, then a hub will not have the minimum payoff
even if it offers the whole stake and accepts any offer. Therefore, hubs can afford
full generosity. Moreover, they minimize the risk of being stigmatized by adopting
high values of p. In other words, they not only can afford full generosity, but also
better they do if they want their neighbors safe. In fact, one can give a simple
estimate for the upper bound 6,: For k,,;,, = 2, the less connected nodes offering 0
and linked to two fully generous neighbors will obtain 4. That is, we can assume
0, < 4, in the argument above. In other words, if the average value of the hubs
neighbors pae > 6y/k, (which at most is 4/ky,), hubs can give away almost the
whole stake. In particular, in the thermodynamic limit where k;, diverges, they
can offer p = 1. Note that this argument also holds for other k classes, provided
that the previous assumptions (before Eq. (3.2)) are satisfied.

As for lowly connected nodes, the analysis is less precise because we must
consider samples of a few individuals from a given distribution, which is a highly
fluctuating situation. Avoiding being the less fitted individuals is now much
harder and can be better reached by low values of p, if, correspondingly, the
neighbors are generous. These nodes cannot afford being generous and, moreover,
they need neighbors generosity to survive. The higher the values of P(p) near
p = 1, the lower the expected values of the offers of lowly connected nodes. On
the other hand, the absence of the low-p peak, along with a decaying profile of
P(p) in the generous range in the ER case with respect to the SF case can be
simply understood from the previous arguments. The increasing density profile

at high p values is associated to the existence of large degrees in the network, and
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thus should not be expected in homogeneous networks. Moreover, insofar as the
peak at low values of p needs a high density profile in the generous range of high
p values, it should neither be expected. In other words, in homogeneous networks
one should expect the more uniform stationary P(p) observed in fig. 3.7(a).

Figure 3.10 confirms that this is indeed the mechanism at work. In this
figure we plot, for SF networks, the average value of the offers made by players
of degree k, (p)i, as a function of the degree. The results reveal that highly
connected nodes offer a large portion of the reward to its neighbors. Moreover,
not only the highest connected players display altruistic behavior, but also those
players with k£ > k* ~ 6 show an average offer larger than 0.8. On its turn,
lowly connected nodes (k < k*) are more egoist and play harder offering a small
piece of the whole stake. However, this behavior does not guarantee the highest
payoffs to low degree nodes. In the inset of Fig. 3.10 we have reported the average
payoffs of agents as a function of their degrees, (IT);. It turns out that the larger
the connectivity of the players, the larger the II;’s are on average. Note that the
overabundance of low degree agents manifests itself by the peak at p ~ 0.3 in Fig.
3.7. Thus, the segregation between low p strategists (egoists) and highly generous
(p > 0.8) strategists takes place on the degree scale dimension. Therefore, the
average generosity (p) ~ 0.5 is not a characteristic value due to the bimodal shape
of D(p). The quickly saturating profile of (p), produces the observed segregation
of the peaks.

3.4.3 Scale-free networks with variable clustering coeffi-
cient
The BA model produces a graph with a scale-free degree distribution but with

clustering coefficient equal to zero. In order to see whether such a topological

property can affect the evolution of the game or not, and in case how the game
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Figure 3.6: Distribution of payoff II after 107 time steps for (a) random graphs
and (b) scale-free graphs when using the configuration ¢; = 1 — p;.
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Figure 3.9: Average payoff for every degree class after 107 time steps for (a)
random graphs and (b) scale-free graphs when using the configuration ¢; = 1—p;.
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very high portions of the stake, a signal of altruistic behavior.
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Figure 3.12: Effects of the individual selection mechanism. We have plotted the
probability of removing players from the game as a result of being the less fitted
individual (circles) or by being a neighbor of the latter (squares) as a function
of their degree k. We have also represented the same probability but considered
that bargainers are removed from the network by a random deletion process
(triangles). The results show that highly connected nodes increases their chances
of remaining in the game by roughly and order of magnitude. The underlying
network of contacts is in all cases a SF network with the configuration ¢; = 1 —p;.

changes, we have implemented the UG on graphs created with the Holme-Kim
model (see 1.4.4).

After averaging over an esemble of graphs with different initial conditions, we
have looked at the same quantities as done for graphs created with the BA model.
It came out that the game is robust in respect to these topological characteristics,
showing that there are not significant changes (in p distribution, payoff distribu-
tion, removed nodes, etc) compared to scale-free graphs without clustering.

The only result we report here is a scatter plot of the values of p vs the degree

k for different values of the clustering coefficient, proportional to the values of mt
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Figure 3.13: Scatter plot of the values of p vs the degree k for scale-free graphs
with different values of clustering coefficient mt (configuration used: ¢; = 1 —p;).

listed in the legend (fig. 3.13). It is clear that there aren’t significant differences

varying mdt.
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3.5 Eguiluz and Tessone’s model

A paradigmatic model similar to the Ultimatum Game, but non exactly the same
one, has been studied by Eguiluz and Tessone [36]. We have implemented the
same model and reproduced their results which are deeply different from the ones
obtained analyzing the standard Ultimatum Game. We report this study in order

to show how sensitive the system is to the set of variables chosen.

3.5.1 The model

A set of N agents arranged in the nodes of a network. An amount of 1 unit is set to
be shared in each interactions between two agents. Each agent i is characterized
by a threshold p; € [0, 1]: as responder it indicates the minimum amount she will
accept; as proposer, it also defines the amount of money she will offer.

The model runs as follows: at each time step all agents play with all their
neighbors synchronously. Thus for each interaction link between two neighbors

agents (7, 7):

1. If the offer p; is above the threshold of agent j, that is to say p; > p;, then
the offer p; is accepted: agent j increases his payoff 1I; by p; while agent i’s
payoff II; increases by 1 — p;. Therefore AII§ = (1 — p;) and AITE = p;.

2. Otherwise if the offer p; is above the threshold of agent ¢, p; > p;, then the
offer p; is accepted: agent i’s payoff increases by p; while agent j’s payoff

increases by 1 — p;. In formulas: AH]-OZ- = (1 —p;) and AHZ}; = pj.

Note that we this rules in each interaction every agent increases his payoff, what-
ever is the relation between his threshold and his neighbors’ ones. On this relation
only depends the amount she earns. In this case there is a complete symmetry

between the two agents in the sense that there is no distinction between the roles
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of proposer and responder: in each interaction the highest offer, that is to say
the highest value of p, is chosen.

The payoff obtained by the agent i after interacting with all his neighbors
[ € T; is given by II; = Y, (AIL + AILff). After each round, a selection rule is
applied to the system: the agent with the lowest payoff in the population and its
immediate neighbors, determined by the topology of the network, are replaced
by new agents with randomly chosen new thresholds. The payoffs of all agents

are then reset to zero and the system is let evolve again.

3.5.2 Results

All the results presented in this section are obtained using networks holding a
scale-free degree distribution. In order to do this, the Barabasi-Albert algorithm
has been used (see 1.4.3 and [18]), setting m = 2.

In fig. 3.14, the stationary distribution of payoffs in the population is plotted.
There is a well defined critical payoff, below which the agents are removed. This
critical value is II. = 1.75. The results suggest that the system self-organizes
in a critical state where the distribution of avalanches is also a power law. The
critical state would emerge despite the non uniform distribution of threshold and
payoffs (see fig. 3.14 and fig. 3.17). An avalanche is typically defined as follows:
it starts when the lowest payoff gets larger than a preset value I, and stops when
it drops below this value. The size, s, of an avalanche is thenumber of time steps
it lasts. In fig. 3.15 we show the distribution of avalanche sizes when we use a
payoff II, = 1.75 as the indication of an avalanche. The probability distribution
displays a power-law decay:

P(s) ~ s (3.4)

with an exponent a = 1.67.
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Figure 3.14: Asymptotic distribution of the payoff after 10° time-steps averaged
over 10? different scale-free graphs.

In order to characterize further the dynamics, we have measured also the first
return time distribution, Py(t), the time elapsed between two mutations affecting
the same agent. The results are plotted in fig. 3.18 and it comes out that the

tail of the distribution is well fitted also by a power-law:

P(t) ~ (3.5)

3.5.3 Discussion

The model proposed by Eguiluz and Tessone tries to explain altruistic behavior
by introducing local interactions which lead the system to self-organization in a
critical state. The model anyway is not a proper Ultimatum Game.

The amount of altruistic behavior is reflected in the distribution of p in the

population. In scale-free networks the distribution of thresholds displays a maxi-
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Figure 3.15: Avalanche size P(s) distribution of the payoff after 10° time-steps
averaged over 10? different scale-free graphs. The solid line is a power-law fit
with exponent a = 1.67.
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Figure 3.16: Scatter plot payoff vs degree. Each point stands for an agent, and
its position on the plan indicates its degree (z-axis) and its payoff at the 105th
time step.
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Figure 3.18: First return time distribution. Py(¢) is the distribution of time
intervals occuring between two consecutives removals of the same node in the

graph.
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Figure 3.19: Degree distribution of nodes with minimum payoff.
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mum around a value of 50%, decaying for lower and larger p. This case captures
only some experimental findings.

Froma dynamical view point, the distribution of avalanches displays a power-
law scaling with an exponent that depends on network topology. This feature is

a typical signature of self-organized criticality.



Conclusions

A conclusion is the place

where you got tired of thinking.

MARTIN HENRY FISCHER

We have studied an ultimatum game without empathy in ER and SF networks.
The ultimatum game is a model extensively used to explain cooperative behavior.
Implementing it on graphs, we have seen that a particular equilibrium arises in
SF networks, usually more interesting than other topologies because of their role
in modelling real-life interactions. In this kind of networks when playing an
UG with an evolution rule based on altruistic punishment, it comes out a sort
of “reciprocal altruism”. The existence of different connectivity classes in SF
networks is at the root of this behavior. In other words, the fate of each node is
determined by its interaction with low and/or highly connected nodes. We stress
that altruism is an emergent property of the system as the rules are stochastic
and no memory mechanism is explicitly assumed. Admittedly, altruism arises
in a self-organized manner with selection acting locally: highly connected agents
optimize their chances to survive by increasing their generosity, without risking
at all being the poorest in town, due to bounds in Eq. (3.3). In support of the
validity of this argument we have also calculated the probability that a node with
degree k is removed (figure not shown), distinguishing the two possible causes for

removal at the selection stage: (i) as a consequence of being the node with the
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lowest payoff in the population, (i) as a consequence of being a neighbor of the
less fitted individual. It turns out that highly connected nodes are never exposed
to direct extinction and their probability of being removed as a consequence of
being neighbors of the less fittest individual is one order of magnitude lower than
that due to random removal.

The mere possibility of the observed bimodal distribution density lies in the
degree heterogeneity of the network. This strategic segregation into low k-low p
and high k-high p agents is a genuine topological effect. Our results also provide
new insights into the relation between the behavior of wealthy individuals and
altruism. Very recently [43], experiments in which in each round of a repeated
game players have three available strategies have been conducted. The partici-
pants were able to choose between cooperation, defection or costly punishment.
The authors found that those individuals with the highest payoffs are not likely
to get involved in punishment acts. In other words, winners don’t punish. In
the context of the model discussed here, our results suggest a different mech-
anism by which wealthy individuals can afford full generosity. The abundance
of highly altruistic individuals does not arise due to reputation [30], nor costly
individuals’ punishment [43], but from a purely scale free effect combined with a
social reinforcement of altruism. In other words, if you are well connected, you
are assured a minimal payoff above the lower bound and then you can increase
your likelihood of survival by helping those that can drop you out of the game.
Additionally, the net result of this highly polarized strategic distribution is that
extreme egoists (p < 0.2) and mild-generous (0.5 < p < 0.8) agents are looser
strategists and are outcompeted by the rest of the population.

In any kind of network, anyway, our results show that typical offers are more
generous that those expected from a rational player. And, as the most impor-

tant result, we observe that altruism naturally emerges in SF networks as a
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consequence of their heterogeneous degree distribution together with social en-
forcement: highly connected players survive better if they give away a large part
of the reward for the benefit of their lowly connected neighbors, which now have

a chance of increasing their total rewards.
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